
APPLICATION OF GEOMETRIC GRAPH DISTANCES IN MACHINE
LEARNING CLASSIFICATION

AN HONORS THESIS

SUBMITTED ON THE 29TH DAY OF APRIL, 2024

TO THE DEPARTMENT OF COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

OF THE HONORS PROGRAM

OF NEWCOMB-TULANE COLLEGE

TULANE UNIVERSITY

FOR THE DEGREE OF

BACHELOR OF SCIENCE

WITH HONORS IN THE DEPARTMENT OF COMPUTER SCIENCE

BY

WILLIAM RODMAN

APPROVED:

DR. CAROLA WENK
Director of Thesis

DR. RAMGOPAL METTU
Second Reader

Abstract

Geometric graph theory, prevalent in computer science for structuring
networks like the World Wide Web and digital road maps, lacks com-
putationally e�cient methods for measuring distances between graphs.
This thesis investigates the traversal distance algorithm’s potential in
machine learning classification, specifically in enhancing the precision of
the k-nearest neighbors (k-NN) model for classifying geometric graphs
represented as English letters. Prior research has explored various algo-
rithms for this purpose, the hypothesis being, the traversal distance of-
fers computational e�ciency despite its asymmetry. Employing a dataset
of English letters, the research tests the hypothesis that a k-NN model,
integrated with traversal distance, could achieve high classification preci-
sion. Through comparative analysis with the graph edit distance (GED),
the traversal distance’s e↵ectiveness in classification tasks is established.
Demonstrating the traversal distance’s potential application in supervised
machine learning.

1

Contents

Acknowledgments 3

1 Introduction 4

2 Introducing the Traversal Distance 5
2.1 Properties of Geometric Graph Theory 5
2.2 Weak Fréchet Distance . 6
2.3 Free-Space . 8
2.4 Traversal Distance and Algorithm 9
2.5 Properties of the Traversal Distance 12
2.6 Geometric Graph Edit Distance 13

3 Visualizing the Traversal Distance 15
3.1 Weak Fréchet Distance Free-Space Diagram 15
3.2 Traversal Distance Free-Space Visualization 17
3.3 Example of Traversal Distance Visualization 21

4 Distance Measurements in Machine Learning 24
4.1 Introducing the K-Nearest Neighbors Model 24
4.2 Evaluating K-Nearest Neighbors Predictions 25

5 Applying the Traversal Distance to Classification Problems 27
5.1 Symmetric Case of the Traversal Distance 27
5.2 K-Nearest Neighbors Using the Traversal Distance 28
5.3 K-Nearest Neighbors Using Graph Edit Distance 30

6 Conclusion 31

Appendix 32

References 36

2

Acknowledgments

I want to extend my gratitude to the individuals who have guided and supported
me throughout my research. Their expertise, encouragement, and mentorship
played a important role in shaping this thesis.

First and foremost, thank you to Dr. Carola Wenk, Professor at Tulane
University’s Department of Computer Science. Dr. Wenk introduced me to
research in my freshman year of college as a research assistant. I have gained
significant research experience over the last three years through my involvement
in the project ’A Unified Framework for Geometric and Topological Signature-
Based Shape Comparison,’ supported by the National Science Foundation under
grant number NSF-CCF 2107434. This research laid the foundation for my
honors thesis, where I have continued to work with Dr. Wenk as my primary
thesis advisor. Next, I would like to thank Erfan Hosseini, a Computer Science
PhD candidate at Tulane University, advised by Dr. Wenk. Erfan has helped
me countless times, both in my time as a research assistant and throughout the
research for my honors thesis. Thank you to Dr. Ramgopal Mettu, Professor
in the Department of Computer Science at Tulane University, for his role as
my second thesis reader. I also extend my thanks to Dr. Sushovan Majhi,
a Post-doc researcher at the University of California, Berkeley. Working with
Dr. Majhi has deepened my understanding of the Graph Edit Distance. His
contribution of the English letter dataset was an important component of this
thesis. My gratitude also goes to Dr. Liz Munch and Dr. Sarah Percival,
faculty at Michigan State University, for their advice and provision of the plant
leaf dataset to the research group at Tulane University.

In addition to my academic mentors, the support of my family has also been
a source of motivation. A special thank you to my father, Rick Rodman, who
supported me throughout my bachelor’s degree. His career at NASA Goddard
Space Flight Center sparked my interest in mathematics and computer science.
To my brother, Sander Rodman, an undergraduate at Cornell University study-
ing information science and statistics. And finally, to my mother and stepfather,
Laura and Todd Ecker.

3

1 Introduction

Geometric graph theory has become a significant concept in modern mathemat-
ics. Its relevance extends into the field of computer science, where it plays a cru-
cial role in defining and structuring complex networks, including the World Wide
Web and digital road mapping systems like Apple Maps [2]. The widespread ap-
plication of geometric graphs in computational geometry has garnered interest
from research organizations, including the National Science Foundation. This
interest has led to funding for academic research focused on advancing methods
for comparing, measuring, and e�ciently storing geometric graphs.

The measurement of distance between two geometric graphs is a practical
comparison in geometric graph theory. However, the comparison faces challenges
since there exists no closed-form solutions for computing the spatial distance
between graphs. This challenge has prompted the development of a variety
of algorithms designed to approximate this distance. The focus of this thesis
is to investigate the traversal distance algorithm, examining its advantages,
disadvantages, and applications [1]. One advantage of this algorithm is its
computational e�ciency; it has a polynomial time complexity, contrasting the
NP-Hard complexity of the graph edit distance (GED). However, a notable
limitation is its asymmetry, an issue that GED avoids [7].

This thesis will test the application of the traversal distance in the classi-
fication of geometric graphs, a challenge within supervised machine learning.
Supervised learning, a subfield of computer science and artificial intelligence,
has gained significant traction, particularly following OpenAI’s release of Chat-
GPT [5]. The central hypothesis of this research is that a k-nearest neighbors
(k-NN) machine learning model, when integrated with the traversal distance as
its distance metric, will prove precise in classifying geometric graphs. This hy-
pothesis will be empirically tested using a dataset of English letters represented
as geometric graphs.

4

2 Introducing the Traversal Distance

In this chapter, the discussion begins by explaining what geometric graphs are;
the inputs needed to compute the traversal distance. Next, the chapter intro-
duces a simpler way to measure the distance between two curves, known as the
weak Fréchet distance. This topic acts as a stepping stone, helping to better
understand the more complex traversal distance. Finally, the advantages and
disadvantages of using the traversal distance are discussed. It is compared with
other methods of measuring distances in geometric graphs, like the graph edit
distance (GED), to gauge its usefulness.

2.1 Properties of Geometric Graph Theory

Geometric graph theory exists within the broader field of graph theory, focused
on the study of graphs embedded in a geometric space. In the case of this thesis,
graphs are embedded in Euclidean planes, where vertices represent coordinate
points and edges signify line segments between these points.

Figure 1: Geometric graph capturing network of roads in Athens, Greece [6].

This discipline extends into numerous applications in computer science. Con-
sider a digital road map, a familiar tool used while driving a car. In this context,
the roads can be thought of as the edges of a geometric graph, while the inter-
sections where these roads meet are the vertices. While traditional road maps
reference geographic coordinates to pinpoint locations, digital road maps, when

5

stored as geometric graphs, contain embedded coordinates that correspond to
locations [9].

Definition 1. Let a geometric graph G be defined as a pair G = (V,E), where
V is the set of vertices, with each vertex v 2 V corresponding to a pair of two-

dimensional coordinates (x, y) in the Euclidean plane. Then the set V is defined

as:

V = {1, 2, . . . , n} where n 2 N such that vi 7! (xi, yi)

E is the set of edges, ensuring G is a undirected geometric graph. Each edge

e 2 E defines a line segment bounded by two vertices. An edge e comprised of

vertices vi and vj is denoted as ek. Then the set E is defined as:

E = {ek | (vi, vj) 2 V ⇥ V and i < j} such that ek = (vi, vj)

The implementation of this geometric graph within a Python program takes
on a slightly di↵erent form. The Python program in this thesis stores geometric
graphs using two dictionaries. The first dictionary, which will be referred to
as nodes, contains all the vertices of the graph. In this nodes dictionary, the
keys are used for vertex identification, and the values are tuples containing the
coordinates of each vertex. The nodes dictionary can be written as:

nodes = {1 : (x1, y1), 2 : (x2, y2), . . . n : (xn, yn)}

The second dictionary, nodeLinks, stores all information pertaining to the
edges of the geometric graph. In this dictionary, the keys contain vertices that
form part of an edge’s line segment. The values associated with these keys are
lists, each containing the neighboring vertices that each completes an edge’s line
segment. The nodeLinks dictionary can be written as [13]:

nodeLinks = {1 : Adj(1), 2 : Adj(2), . . . n : Adj(n)}

Adj(i) = {j | (vi, vj) 2 E}

The configuration of geometric graphs in the Python program, as detailed
in a later section of this chapter, reduces the time for searching for all nodes
adjacent to a given node [9].

2.2 Weak Fréchet Distance

Before mentioning the traversal distance, it is instructive to first understand the
weak Fréchet distance, a metric for measuring the distance between two curves.
The rationale for starting with the weak Fréchet distance is that it presents a
simpler problem, which provides a foundation for grasping the more generalized
traversal distance problem.

Letting C1 and C2 be defined as two polygonal curves, where each curve
has a first and last point. Additionally, let free-space be a subspace of the

6

parameter spaces for C1 and C2, defined by the value ✏. Essentially, the weak
Fréchet distance is the value ✏, the parameter of free-space spanning entirely
between the first and last points of C1 and C2. More strictly, the value ✏ is
a weak Fréchet distance if and only if there exists a continues path across the
free-space, such that the path starts at the free-space for the first points of C1

and C2 and ends at the free-space for the last points of C1 and C2.

Figure 2: GPS coordinate paths as polygonal curves [14].

To illustrate, consider the scenario in Figure 2 comparing a GPS-tracked
route to a hiking trail stored digitally. Here, the weak Fréchet distance would
be used to determine the greatest deviation of the GPS route from the hiking
trail, with the GPS trajectory and the hiking trail representing the two curves
in question.

Definition 2. Given two curves C1 and C2 that exist in the Euclidean plane.

Let C1 : [0, 1] ! R2
, C2 : [0, 1] ! R2

, and k · k denote the Euclidean norm.

Then the weak Fréchet distance �F (C1, C2) is defined as:

�F (C1, C2) := inf
↵,�

max
t2[0,1]

kC1(↵(t))� C2(�(t))k,

where ↵ : [0, 1]! [0, 1] and � : [0, 1]! [0, 1] range over continuous parame-

terizations with ↵(0) = 0, ↵(1) = 1, �(0) = 0, and �(1) = 1.

This introduction of the weak Frechet distance equation sets the stage for
the definition of the traversal distance in section 2.4 [1].

7

2.3 Free-Space

Before defining the traversal distance and algorithm, it is necessary to introduce
the formal definition of free-space and the data structure used to store free-space.
In this thesis, free-space will be referred to as FS✏.

Definition 3. Given the distance threshold ✏ � 0. Let FS✏ be the region in

the parameter space that consists of all edge pairs for C1 and C2 for distance at

most ✏. Then FS✏ is defined as:

FS✏ = {(✓, �) 2 [0, 1]2 | kC1(✓)� C2(�)k ✏}

Each combination of edges within C1 and C2 is designated a square free-
space cell [1]. Figure 3 shows an example of a pair of edges, ei and ej , taken
from the polygonal curves C1 and C2, respectively. Figure 4 illustrates the
parameter space of ei and ej , highlighting the free-space in white when ✏ = 6
[13].

Figure 3: Pair of distinct edges [13].
Figure 4: Corresponding free-space
cell when ✏ = 6 [13].

While Definition 2 describes the parametrization of space with curves, the
weak Fréchet distance algorithm actually represents FS✏ using discrete space [1].
In this case, a free-space cell consists of four cell boundaries, each representing
a wall of the square free-space cell. Each cell boundary within a free-space cell
stores the starting and ending points, denoted (start, end), of free-space along
a cell wall. These eight points collectively form a polygon that contains the
cell’s free-space [13]. Figure 5 illustrates this, using the same pair of edges from
Figure 3. Figure 6 shows how the corresponding free-space cell from Figure 5 is
stored in the cell boundary data structure.

8

Figure 5: Cell boundary starting
and ending points calculated based
on value ✏.

Figure 6: Cell boundary starting
and ending points inside a free-
space cell.

As will be shown in the next section, the use of cell boundaries can be applied
more generally to two geometric graphs, G1 and G2 [1]. The Python program
stores cell boundaries in the form of a dictionary [13]:

cell boundaries = {(e, v) : cellBoundary(e, v)) | P}

cellBoundary(ei, vj) = (start, end) where 0 start < end 1

P = (v 2 V1 and e 2 E2) or (v 2 V2 and e 2 E1)

2.4 Traversal Distance and Algorithm

The traversal distance, defined in chapter 1, should be thought of as a more
general form of the weak Fréchet distance. While the weak Fréchet distance
is concerned with measuring the distance between two curves C1 and C2, the
traversal distance extends this concept to measure the distance between two
geometric graphs G1 and G2.

9

Figure 7: Two networks of roads in Athens, Greece as geometric graphs [6].

To understand this, consider the traversal distance from G1 to G2 as the
maximum distance required to cover any point on the edges of G1, while simul-
taneously traversing the entirety of G2 in a continuous fashion. A key distinction
between the traversal distance and the weak Fréchet distance is their symmetry
properties. The weak Fréchet distance is symmetric, meaning the distance from
C1 to C2 is identical to that from C2 to C1. In contrast, the traversal distance is
asymmetric, such that the distance from G1 to G2 may di↵er from the distance
from G2 to G1, since the entire traversal of G2 in a continuous fashion is not
required.

Definition 4. Given two geometric graphs G1 = (V1, E1) and G2 = (V2, E2).
Define the traversal distance �T from G2 to G1 as:

�T (G1, G2) = inf
f,g

max
t2[0,1]

kf(t)� g(t)k

where f traverses entirely over G2 and g traverses partially over G1.

After defining the traversal distance equation, it is important to note that
due to its nature as an infimum, the traversal distance algorithm is computation-
ally expensive. This characteristic creates an opportunity for a less expensive
algorithm for approximating the traversal distance, o↵ering a practical solution
for evaluating this metric in real-world applications [1].

The algorithm designed to decide traversal distance is comprised of three
components. The first component, a dynamic program, populates

10

cell boundaries for a given ✏. The second component verifies that G2 has
been completely traversed by the first algorithm. This is done by projecting
cell boundaries onto G2, if the projection covers the entirety of G2, then
the verification is true. When verification is true, these two algorithms are
responsible for deciding whether �T (G1, G2) ✏. To approximate the infimum of
the traversal distance, a binary search algorithm is implemented. This algorithm
minimizes the distance to meet specific precision criteria, ultimately yielding an
approximation ✏ where �T (G1, G2) ✏ ^ �T (G1, G2) ⇡ ✏ [13].

Step 1: Compute the Cell Boundaries. Defined in Algorithm 1, the dy-
namic program used to compute cell boundaries is a depth-first search (DFS)
algorithm DFSTraversalDist. This algorithm writes to
cell boundaries while traversing all cell boundaries in FS✏.

Algorithm 1 DFSTraversalDist

Initialize an empty set visited
Initialize an empty dictionary cell boundaries

procedure DFSTraversalDist(CB)
Compute CB
Add CB to visited
Insert CB in cell boundaries

for each neighbor of CB in nodeLink do
if neighbor is not in visited then

DFSTraversalDist(CB)
end if

end for
end procedure

seed CB = cellBoundary(e1, v1) . Starting cell boundary.
Call DFSTraversalDist(seed CB)

Step 2: Verify the Traversal of G2. Following the traversal detailed in
Step 1, it is necessary to next verify that G2 was entirely traversed. As pre-
viously discussed, this verification projection check is determined true if the
projection of cell boundaries onto G2 covers the entirety of the graph and is
determined false otherwise. Furthermore, it is implied that �T (G1, G2) ✏ when
projection check equals true and �T (G1, G2) > ✏ when projection check
equals false. Let the output of projection check be:

projection check(cell boundaries,G2) =

(
True Projection covers G2 entirely.

False Otherwise.

11

Step 3: Binary Search for Traversal Distance. The algorithms estab-
lished in Step 1 and Step 2 will now be incorporated into the binary search
algorithm, denoted as binarySearch. Defined in Algorithm 2, this particular al-
gorithm approximates the infimum of the traversal distance equation. It achieves
this by searching for the smallest value of ✏, for which projection check yields
true.

Algorithm 2 binarySearch

procedure binarySearch(left, right, precision)
Initialize ✏

while right� left > precision do
✏ (left+ right)/2
Initialize cell boundaries
Call DFSTraversalDist(CB)

if projection check(cell boundaries,G2) is True then
right ✏

else
left ✏

end if
end while
return right

end procedure

Given the continuous domain of the search space for ✏, since �T (G1, G2) 2
[0,1), it is necessary to bound ✏ within a finite search domain. Thus, we assume
�T (G1, G2) 2 [left, right], ensuring that the binarySearch reduces the space
to [✏ � precision, ✏]. Here, left and right, respectively, denote the lower and
upper boundaries of the search space, while precision specifies the degree of
accuracy to which the value of ✏ is returned.

Having explained the steps of the traversal distance algorithm, it is now
evident that the traversal distance is computed in the Python program by calling
the binarySearch function.

2.5 Properties of the Traversal Distance

Space Complexity of the Cell Boundaries After running the traversal
distance algorithm, the program stores the values of ✏ and cell boundaries.
To determine the program memory requirements for this, we calculate the upper
bound of the number of cell boundaries that could exist between two geometric
graphs. This calculation reveals that the space complexity of cell boundaries,
given two geometric graphs G1 and G2, is asymptotically bound by [13]:

S 2 O((|V1| · |E2|) + (|V2| · |E1|))

12

Time Complexity of the Traversal Distance The time complexity of the
traversal distance algorithm is determined by the combined time complexities
of the DFSTraversalDist, projection check, and binarySearch algorithms.

First, consider the fact that DFSTraversalDist is, by definition, a DFS
algorithm, which runs in polynomial time. If we assume the time is takes to
compute cellBoundry 2 O(1) then the time complexity of DFSTraversalDist
is:

TD 2 O((|V1|+ |E1|) · (|V2|+ |E2|))
The projection check runs in polynomial time such that [1]:

TP 2 O((|V1| · |E2|) + (|V2| · |E1|))
For binarySearch operating over a continuous space, its time complexity

is influenced by the number of iterations required to achieve the desired pre-
cision within the defined bounds. Given the left bound, right bound, and
precision, the time complexity can be articulated as:

TB 2 O(log2 �) where � =
right� left

precision

Combining these individual time complexities, we can determine the cumu-
lative time complexity of the traversal distance algorithm as follows:

TT = TB · (TD + TP)

= TB ·O((|V1|+ |E1|) · (|V2|+ |E2|)) +O((|V1| · |E2|) + (|V2| · |E1|))
= TB ·O(|V1||E2|+ |V2||E1|+ |V1||E1|+ |V2||E2|)
= O(log2 �) ·O(|V1||E2|+ |V2||E1|+ |V1||E1|+ |V2||E2|)
= O(log2 � · (|V1||E2|+ |V2||E1|+ |V1||E1|+ |V2||E2|))

This analysis establishes that the algorithm runs in O(log2 � ⇥ (|V1||E2| +
|V2||E1|+ |V1||E1|+ |V2||E2|)) time [13]. Another property to revisit, as previ-
ously mentioned, is the traversal distance as an asymmetric measure. For the
remainder of this thesis, it is asserted that [1]:

�T (G,G) = 0 8G

2.6 Geometric Graph Edit Distance

A second method for measuring the distance between two geometric graphs in-
volves calculating the edit distance between them. The edit distance between
two objects is defined as the minimum number of operations required to trans-
form one object into the other, where the operations include insertions, dele-
tions, and relabeling [7]. Similar to how the Levenshtein distance measures the
edit distance between two strings [8], the edit distance between two geometric
graphs is referred to as the graph edit distance (GED).

13

For geometric graphs G1 and G2, GED searches for a sequence of operations
p that transforms G1 ! G2 such that the transformed graph G0

1 = G2. An
operation o may include deleting isolated vertices, inserting vertices, adding
edges between existing vertices, deleting edges, and translating a vertex from one
point to another. Each operation o has a corresponding cost function Cost(o)
for executing the operation. The cost for a sequence of operations is given by:

Cost(p) =
X

oi2p

Cost(oi) where p := sequence of operations

As a result, GED is defined as the cost of the least expensive path that
transforms G1 ! G2.

GED(G1, G2) = inf
p2P (G1,G2)

Cost(p)

P (G1, G2) := Set of all p that transform G1 ! G2

An advantage of GED over the traversal distance is its symmetry, which
exists since the edit sequences between geometric graphs are reversible. One
significant disadvantage is that computing GED is NP-hard, meaning that the
time required to compute GED increases exponentially with the size of the
geometric graphs [7].

14

3 Visualizing the Traversal Distance

This chapter builds on the traversal distance by demonstrating two visualization
techniques. It starts with the free-space diagram for the weak Fréchet distance,
explaining how it facilitates the reader’s understanding of the concept. Addi-
tionally, a new visualization method for the traversal distance is introduced,
addressing the challenges posed by the idea of a traversal distance free-space
diagram.

3.1 Weak Fréchet Distance Free-Space Diagram

An important tool for visualizing the weak Fréchet distance is the FS✏ dia-
gram. This visualization plays a role in enhancing the understanding of what
the weak Fréchet distance algorithm computes. It also allows for the verification
of whether cell boundaries within the diagram are being computed correctly [1].
The following discussion delves into the construction and interpretation of the
FS✏ diagram, and how it builds on the visualization of the traversal distance
free-space. The visualization in this section were generated using the Fréchet
distance Python program documented in the appendix.

In Figures 8, 9 and 10, the FS✏ diagram is demonstrated through a simple
example involving two curves, C1 and C2. In Figure 8, Curve C1 is comprised
of three line segments, while C2 is comprised of four line segments. In Figures 9
and 10, Curve C1 is aligned along the horizontal axis and C2 along the vertical
axis, with FS✏ represented in white.

Figure 8: Curves C1 and C2 [13].

15

Assigning an arbitrary epsilon value, ✏ = 2, to the FS2 diagram, the resulting
visualization of the diagram can be observed as follows.

Figure 9: Free-space diagram where ✏ = 2 [13].

Observing Figure 8, the diagram consists of 12 free-space cells, matching the
product of line segments in each curve: four in C1 and three in C2. This epsilon
value is not considered a weak Fréchet distance, however, since FS2 does not
cover every line segment inside C1.

16

Figure 10: Free-space diagram where ✏ = 4 [13].

Increasing epsilon to ✏ = 4 in Figure 10 allows FS4 to cover every line
segment inside C1 and C2, indicating that �F (C1, C2) 4 [13].

3.2 Traversal Distance Free-Space Visualization

Shifting focus to the traversal distance, a problem arises when visualzing the
FS✏ diagram. The FS✏ diagram for the weak Fréchet distance can be e↵ectively
displayed in the Euclidean plane; this is achieved by mapping C1 and C2 along
the X and Y axes in the Euclidean plane, respectively. However, this approach
encounters a limitation when applied to geometric graphs. Such graphs cannot
be similarly reduced to an axis in the Euclidean plane without causing free-space
cells to overlap.

To understand how geometric graphs cause free-space cells to overlap, con-
sider the case of a free-space diagram for one polygonal curve C and one geo-
metric graph G. Figure 11 shows an example of C and G.

17

Figure 11: Curve C and graph G. [13].

The free-space for Figure 11 can be visualized by constructing a free-space
diagram of 2D planes in 3D space, where G is on the X and Y plane, and C is
aligned along the Z axis. Figure 12 visualizes the free-space diagram of G and
C with ✏ = 5, as seen from an arbitrary viewpoint.

18

Figure 12: Free-space diagram of G and C where ✏ = 5 [13]

From Figure 12, it is evident that there is no viewpoint of the free-space
diagram where the free-space cells do not overlap. This same challenge exists for
the case of a traversal distance free-space diagram, where a free-space diagram
is constructed from 2D planes in 4D space. Consequently, 4D space cannot
be directly visualized. This section introduces a method for visualizing the
traversal distance’s free-space. Instead of displaying a free-space diagram with
cells, this method focuses on visualizing the area of the free-space within the
free-space cells.

Area of Free-Space Within a Cell In the case of two edges ei and ej , each
from geometric graphs G1 and G2, these two edges constitute a single free-space
cell, labeled FS✏,i,j . Let A be the area of the free-space polygon inside the free-
space cell FS✏,i,j , denoted A(FS✏,i,j). Recall that FS✏,i,j is represented as a
square cell, constructed with four boundary walls, and the length from start
to end of a cell boundary falls within the range [0, 1]. Since a free-space cell is
a square of length one, then A(FS✏,i,j) 2 [0, 1].

Since A is a value between [0, 1], it can be interpreted as a percentage. For
instance, if A(FS✏,i,j) = 0.345, this indicates that 34.5% of FS✏,i,j is covered
by free-space. A(FS✏,i,j) = 0.0 would indicate FS✏,i,j is entirely grey and
A(FS✏,i,j) = 1.0 would indicate it is entirely white.

19

Visualizing Free-Space Area To visualize the free-space area within FS✏,i,j ,
color in the quadrilateral area that lies between both edges ei and ej on their
Euclidean plane. Consider this quadrilateral area the spatial relationship be-
tween these two edges. Figure 13 demonstrates the spatial relationship between
an example pair of edges ei and ej .

Figure 13: Highlighted space between e1i and e2j [13].

Furthermore, a transparency function ↵ is applied to the color of the quadri-
lateral area. Such that the degree of transparency directly corresponds to the
value of A(FS✏,i,j). This means that ↵ visually represents the proportion of
free-space covering cells. Figures 14 through 17 illustrate how, as ✏ increases
from an empty free-space cell when ✏ = 0 to a full free-space cell when ✏ = 15,
the color’s transparency decreases.

20

Figure 14: ✏ = 0 [13]. Figure 15: ✏ = 10.01 [13].

Figure 16: ✏ = 10.5 [13]. Figure 17: ✏ = 15 [13].

This value ↵ is amplified for overlapping areas. Consider a set of overlapping
free-space areas S = {A1, A2, . . . , An}. The value of ↵ for the intersection of
these overlapping areas is calculated as follows [13]:

↵ = 1�
nY

i=1

(1�Ai)

3.3 Example of Traversal Distance Visualization

To demonstrate the overlapping property, consider an example involving a pair
of geometric graphs representing more complex structures. This example in-
volves a comparison between two distinct species of plant leaves, with each leaf
constructed as a geometric graph. In these graphs, the edges represent both the
outline of the leaf and its vein structure.

21

Figure 18: Two plant leaves, from the species Actinia and Biflora, as geometric
graphs [11].

Having plotted the pair of geometric graphs, the free-space between both
geometric graphs is now colored in for several values of ✏.

22

Figure 19: ✏ = 0 [11]. Figure 20: ✏ = 150 [11].

Figure 21: ✏ = 300 [11]. Figure 22: ✏ = 450 [11].

Observing the visualizations, it becomes evident that the highlighted free-
space expands as the value of epsilon increases [11].

23

4 Distance Measurements in Machine Learning

This chapter switches focus to concepts in machine learning: non-parametric
supervised learning and classification. These topics will be important for di↵er-
entiating di↵erent types of models within the field of machine learning. Followed
by the application of distance measures in machine learning, with a particular
focus on the k-nearest neighbors (k-NN) model. The chapter introduces the con-
cept of generalizing distance, explaining how k-NN, as defined here, performs
when used with the traversal distance in chapter 5.

4.1 Introducing the K-Nearest Neighbors Model

k-NN is a classification model in machine learning, specifically within supervised
learning. As a non-parametric model, k-NN distinguishes itself by assuming
the data does not have any specific underlying statistical distribution. This
characteristic of being assumption-free renders k-NN not only basic but also an
essential model for grasping the concepts in machine learning classification.

Classification in Supervised Learning Supervised learning in machine
learning refers to the process where a model is trained using a labeled dataset.
Where the term supervised implies that the model learns from the input data X
and output label y. In other words, the supervision of learning can be thought
of as a function model(X) = y.

Classification in supervised learning involves categorizing data into prede-
fined classes. A model predicts the class of a new observation xnew by analyzing
X, then assigns xnew a predicted label ŷ.

Classification can be separated into two formats: binary and multi-class. In
binary classification, the model classifies observations into one of two classes.
While multi-class classification involves categorizing observations into one of
multiple classes. This thesis focuses only on multi-class classification [5].

K-Nearest Neighbors Algorithm The process of predicting a class, for an
observation xnew, can be broken down into the following steps:

1. Choose the Number of Neighbors: Select the number of nearest neighbors,
k, which will influence the prediction. How to determine a value for k is discussed
in the appendix.

2. Calculate Distances: For the observation xnew, compute the Euclidean
distance between xnew and each observation in X.

3. Identify Nearest Neighbors: Sort all calculated distances in ascending
order. Then select the top k nearest observations from the dataset.

5. Predict the Classification: Determine the predicted label ŷ for the ob-
servation xnew by taking the most common label among the k neighbors. This
step is know as a majority voting ensemble in machine learning.

The formal definition of the k-NN algorithm is presented as Algorithm 3 in
[10].

24

Algorithm 3 KNearestClassifier

Require: Dataset X
Require: Labels y
Require: New observation xnew

Initialize number of neighbors k
Initialize distance d
Initialize list distances

Begin Algorithm
for each point xi in the training data X do

Calculate distance d(xi, xnew)
Append d(xi, xnew) to distances

end for

Sort distances in ascending order
Select top k nearest neighbors from distances
Aggregate labels of selected neighbors
ŷ := Most common label
return ŷ
End Algorithm

A sixth step of the algorithm, not previously discussed, addresses situations
where majority voting leads to a tie. This occurs when two or more labels are
equally most common among the aggregated labels [5].

Time Complexity If the time complexity of our traversal distance algorithm
is TT . Assuming the sorting algorithm used is Quick Sort, the time complexity
of the sorting process can be defined as O(|X| log2 |X|) [3], where |X| represents
the number of observations in the data. Therefore, the overall time complexity
of a k-NN prediction can be expressed as follows [5]:

TKNN 2 O(TT |X|+ |X| log2 |X|)

4.2 Evaluating K-Nearest Neighbors Predictions

This section outlines how to assess the performance of k-Nearest Neighbors
(k-NN) models using n-fold cross-validation, alongside metrics such as preci-
sion and recall. Explaining n-fold cross-validation, which involves dividing the
dataset into multiple parts to ensure each segment is used for testing. This
approach helps measure the model’s ability to predict new observations, as well
as the comparison of di↵erent model’s. The application of these methods will
be demonstrated using the scikit-learn library [10].

25

N-Fold Cross-Validation To evaluate the k-NN algorithm, we use n-fold
cross-validation, where the dataset is split into n equal parts, called folds. In
each evaluation round, one fold is used as the test set and the other n� 1 folds
as the reference set. This cycle is repeated until each fold has been used as the
test set once, ensuring all data is used for both training and testing. Below is
how n-fold cross-validation is implemented using scikit-learn:

from sklearn.model_selection import KFold

folds = KFold(n_splits = 5)

Precision and Recall of Predictions To measure how many predicted val-
ues (ŷ) in a test fold are correctly classified as the actual values (y), precision
and recall metrics are used. Precision measures the proportion of correctly pre-
dicted positive observations to the total predicted positive observations. It is
a key indicator of a model’s ability to minimize false positives. Recall, on the
other hand, assesses the proportion of actual positive observations that were
correctly predicted by the model, thus reflecting its capability to minimize false
negatives. For multi-classification problem, the Precision and Recall of a set of
predictions is defined as [4]:

Definition 5. Given a set of multiple classes C = {ci|i 2 N}, within a set of

predictions.

• Precision for a specific class ci is defined as the ratio of the number of

true positive instances TPi to the total number of instances predicted as

belonging to that class, which is the sum of the true positives and false

positives FPi:

Pi =
TPi

TPi + FPi

• Recall for class ci is the ratio of the number of true positive instances

TPi to the actual number of instances of that class in the data, which is

the sum of the true positives and false negatives FNi:

Ri =
TPi

TPi + FNi

The calculation of precision and recall can be performed using scikit-learn
as follows [10]:

from sklearn.model_selection import cross_val_score

p = cross_val_score(model, X, y, cv=folds, scoring=’precision’)
r = cross_val_score(model, X, y, cv=folds, scoring=’recall’)

26

5 Applying the Traversal Distance to Classifica-
tion Problems

To test the precision of the traversal distance within the framework of the k-
nearest neighbors (k-NN) algorithm, the inherent asymmetry of the traversal
distance must be addressed. Therefore, a symmetric adaptation suitable for
k-NN is proposed. This adjustment enables the k-NN algorithm to classify
a dataset of English letters represented as geometric graphs using traversal
distance [12]. The goal is to evaluate the hypothesis that traversal distance
can precisely classify geometric graphs. This is determined by comparing the
performance of the traversal distance k-NN model with that of the graph edit
distance (GED) k-NN model.

5.1 Symmetric Case of the Traversal Distance

To incorporate the traversal distance into the k-NN algorithm, it is necessary
to first address the asymmetry of the traversal distance. Meaning, the distance
from G1 to G2 may not equal the distance from G2 to G1, resulting in two
distinct distances. k-NN operates under the assumption that the distance met-
ric implemented is symmetric [5]. Consequently, a symmetric variant of the
traversal distance must be defined.

To develop a symmetric distance metric for k-NN, a function must be devised
that combines the two asymmetric distances produced by the traversal distance
into a single distance measure [1]. The design of a function should be tailored to
the specific requirements of a dataset [5]. Given that this chapter concentrates
on the comparison of English characters, it operates under the presumption that
the geometric graphs being compared have equivalent magnitudes [12].

For the distance metric of k-NN, the function will be defined as the maximum
of the two distances produced by the traversal distance. Taking the maximum
value ensures that the distance, denoted by ✏, completely covers both geometric
graphs during projection check.

Theorem 1. Let the symmetric traversal distance between two geometric graphs

G1 and G2 be defined by the equation:

�ST (G1, G2) = max{�T (G1, G2), �T (G2, G1)}
Then, it holds that ✏ = �ST (G1, G2) passes the projection check for both

�T (G1, G2) and �T (G2, G1), ensuring that ✏ fully covers both G1 and G2 for the

symmetric case.

Proof. For the symmetric traversal distance between two geometric graphs G1

and G2, assume without loss of generality:

�ST (G1, G2) = �T (G1, G2) � �T (G2, G1)

Where �T (G1, G2) = ✏1 and �T (G2, G1) = ✏2. This implies that ✏1 � ✏2.
By Definition 4, �T (G1, G2) traverses entirely over G1 and traverses partially

27

over G2. Given that the free-space is a monotone function of ✏, this statement
holds for any ✏ 2 [✏2,1). If ✏1 � ✏2, then ✏1 2 [✏2,1), ensuring �T (G1, G2)
traverses over the entirety of both G1 and G2. Therefore, �ST (G1, G2) covers
both graphs for the purpose of projection check.

5.2 K-Nearest Neighbors Using the Traversal Distance

Having established a symmetric traversal distance, it is now possible to pre-
dict classifications using the English letter dataset. In the context of the En-
glish Letter dataset, X comprises of English letters stored as geometric graphs
rather than traditional points, y denotes the class of letter, and d serves as the
metric for quantifying the distance between any two geometric graphs. The
dataset comprises 2,250 labeled geometric graphs, each representing a distorted
drawing of an English letter. These drawings are categorized into 15 distinct
classes of 150 observations. Each class corresponds to one letter such that
C = {A,E, F,H, I,K,L,M,N, T, V,W,X, Y, Z} [12]. See Figures 23 though 26
for examples of geometric graphs.

28

Figure 23: Class Y [12]. Figure 24: Class M [12].

Figure 25: Class Z [12]. Figure 26: Class E [12].

To perform n-fold cross-validation, the dataset is partitioned into n = 5
folds using uniform random sampling [5]. For k-NN, the parameter specifying
the number of neighbors, is set to k = 7. Meanwhile, for the traversal distance
calculation, the binarySearch function’s parameters are configured as follows:
left = 0, right = 3, and precision = 0.001.

model = KNeighborsClassifier(n_neighbors=7, mean=’max’,
left=0, right=3, precision=0.001)

The model is first fitted on the training dataset, then predicts the observa-
tions in the test dataset, yielding 449 predicted classes from the test dataset,
denoted as ŷ [5]. To evaluate the precision and recall of the |C| = 15 classes be-
tween ŷ and the true labels y, both macro-average precision and macro-average
recall are calculated. These metrics are computed by first calculating the pre-
cision for each class independently then taking the average of these precision
scores [4].

29

Macro-Average Precision =
1

|C|

|C|X

i=1

Pi Macro-Average Recall =
1

|C|

|C|X

i=1

Ri

(1)
After running the test, the results showed the macro-average precision’s and

a macro-average recall’s listed in Table 1.

Test Fold Macro-Average
Precision

Macro-Average
Recall

1 88.0 87.6
2 86.3 85.1
3 87.9 88.0
4 84.6 83.5
5 81.6 82.5

Table 1: Macro-average precision and recall scores.

By taking the averages of these five macro-average precision’s and macro-
average recalls, the average values are 85.7 percent and 85.3 percent respectively,
below those obtained when using k-NN with the graph edit distance [12].

5.3 K-Nearest Neighbors Using Graph Edit Distance

To compare the results obtained using traversal distance, it is useful to examine
a benchmark test conducted with GED. In their seminal work, Kaspar Riesen
and Horst Bunke investigate the e�cacy of the k-NN model, employing GED, in
classifying geometric graph representations of the English alphabet. This com-
parison serves as the reference point for assessing the performance of traversal
distance.

In their investigation, Riesen and Bunke utilize a dataset comprising 6,750
observations of English letters, with 750 observations uniformly distributed
across 15 letter classes. To evaluate the performance of the GED k-NN model,
the dataset was divided into equal parts for validation, training, and testing.
As a result, the model achieved a macro-average precision of 99.6 percent on
the test dataset, showcasing the high performance of GED in this context [12].

When compared, the GED k-NN model outperforms the traversal distance
k-NN model by 16.2 percent.

30

6 Conclusion

This thesis examined the application of geometric graph distances within com-
puter science, with a specific focus on the traversal distance and the algorithm
for computing it. The aim was to assess the utility of the traversal distance
in classifying geometric graphs within the English letter dataset. Comparative
analysis revealed that the k-NN model based on traversal distance achieved pre-
cision comparable to that of the GED-based k-NN model by Riesen and Bunke,
despite the traversal distance being polynomial and GED being NP-Hard. This
result indicates that the traversal distance is an e↵ective method for classifying
geometric graphs.

The research presented several key findings. The traversal distance was
defined by incorporating elements of geometric graph theory, weak Fréchet dis-
tance, and free-space diagrams. The algorithm’s steps were detailed, and its
time complexity was determined to be polynomial. Additionally, the thesis pro-
posed a method for visualizing free-space areas related to the traversal distance,
demonstrating its e↵ectiveness with examples from the plant leaf dataset. A
symmetric version of the traversal distance was defined, wherein taking the
maximum value of both asymmetric distances ensures that the free-space en-
tirely covers both geometric graphs. The e�cacy of the traversal distance in
enhancing the k-NN model’s performance for classifying geometric graphs, as
evidenced in the English letter dataset, was measured with precision and recall
metrics.

For future work, the thesis suggests avenues for refining the traversal dis-
tance. The symmetric traversal distance algorithm could be optimized by pre-
venting the recalculation of free spaces already computed within the maximum
function. Moreover, there is potential for enhancing the overall runtime e�-
ciency of the traversal distance algorithm through the adoption of a lower-level
programming language. In conclusion, the thesis underscores that distances
in geometric graph theory represent a relatively new field within mathemat-
ics that is currently evolving. The application of these distances, particularly
in computer science for digital road maps and increasingly within supervised
machine learning, is expected to broaden as the e�ciency of these algorithms
improves and their comparative advantages are tested against existing software
and models.

31

Appendix

Figure 27: Image of honors thesis GitHub repository [13].

This appendix documents the Python packages and Jupyter Notebooks written
to support this thesis. All supporting materials are publicly available in the
compgeomTU/will rodman thesis GitHub repository.

FSDVis Python Package

Figure 28: Image of will rodman thesis/FSDVis ReadMe file [13].

32

The FSDVis Python Package computes and visualizes the free-space diagram
for the weak Fréchet distance, as well as the free-space diagram for a single
geometric graph and a polygonal curve. The package is located at
will rodman thesis/FSDVis. Using Figure 12 as an example, the following
script from Jupyter Notebook image generator.ipynb imports the package
and plots a free-space diagram.

import matplotlib.pyplot as plt
from FSDVis.Curve import Curve
from FSDVis.Graph import Graph
from FSDVis.GraphByCurve import GraphByCurve

filepath_1 = ’examples/paris/arc_de_triomphe’
filepath_2 = ’examples/paris/vehicle’
graph = Graph(filepath_1)
curve = Curve(filepath_2)
epsilon = 5

fsd = GraphByCurve(graph, curve)
fsd.buildFreeSpace(epsilon)
fsd.buildCells()
fsd.plotFreeSpace()

TraversalDistance Python Package

The TraversalDistance Python Package contains the traversal distance algo-
rithm, traversal distance visualizer and k-NN algorithm implementing the sym-
metric traversal distance. The package located at
will rodman thesis/TraversalDistance contains the files listed in Table 2.

33

File Description
BinarySearch.py BinarySearch class function of the

traversal distance algorithm.
CalFreeSpace.py Function for computing then returning

the [start, end] boundary for free-space
cell walls.

FreeSpaceGraph.py DFSTraversalDistance class function
of the traversal distance algorithm.

Graph.py Class data structure for storing geomet-
ric graphs.

KNeighborsClassifier.py Custom k-NN class that implements
the symmetric traversal distance.

LineIntersection.py Supporting class for the
projection check function.

Visualize.py Class responsible for visualizing the
traversal distance free-space area.

Table 2: TraversalDistance Python Package Files.

Using Figure 20 as an example, the following script from Juniper Notebook
image generator.ipynb imports the package and plots the traversal distance
free-space area.

import matplotlib.pyplot as plt
from TraversalDistance.Graph import Graph
from TraversalDistance.Visualize import Visualize

filepath_1 = ’examples/plant/Pact1_actinia_3’
filepath_2 = ’examples/plant/Pbif1_biflora_1’
graph_1 = Graph(filename=filepath_1, name=’Actinia’)
graph_2 = Graph(filename=filepath_2, name=’Biflora’)

visualize = Visualize(graph_1, graph_2, epsilon=150)

fig, ax = visualize.plot_freespace(legend_fontsize=’large’)
fig.set_size_inches(4, 4)
plt.show()

Traversal Distance K-NN Model Test: Jupyter Notebooks

The analysis of the traversal distance k-NN model, conducted on the English
letter dataset, was executed within the Python script letter knn.py. To pre-
dict all the values in the dataset, the model was run on Google Could Platforms
Compute Engine. Test results were logged and subsequently analyzed in the
Jupyter notebook

34

letter knn analysis.ipynb. This analysis, illustrated in Figure 29, demon-
strates how precision and recall metrics for an n-fold vary in relation to the
value of k.

Figure 29: Traversal distance k-NN model precision and recall scores on the
English letter dataset

Upon reviewing Figure 29, both precision and recall exhibit a consistent
decline as k increases from 20 to 40, with peak precision occurring at k = 7.

35

References

[1] Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar
maps. Journal of Algorithms, 49(2):262–283, 2003.

[2] Daniel Chen, Christian Sommer, and Daniel Wolleb. Fast Map Matching
with Vertex-Monotone Fréchet Distance. In Matthias Müller-Hannemann
and Federico Perea, editors, 21st Symposium on Algorithmic Approaches

for Transportation Modelling, Optimization, and Systems (ATMOS 2021),
volume 96 of Open Access Series in Informatics (OASIcs), pages 10:1–
10:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[3] Shalosh B. Ekhad and Doron Zeilberger. A Detailed Analysis of Quicksort
Running Time. https://arxiv.org/abs/1903.03708, 2019.

[4] Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for Multi-
Class Classification: an Overview. https://arxiv.org/abs/2008.05756, 2020.

[5] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2
edition, 2009.

[6] Erfan Hosseini. GraphSamplingToolkit: Compare roadmaps or evaluate
reconstructed maps with Graph Sampling Toolkit. https://github.com/
Erfanh1995/GraphSamplingToolkit, 2021.

[7] Sushovan Majhi and Carola Wenk. Distance Measures for Geometric
Graphs. https://arxiv.org/abs/2209.12869, 2022.

[8] Evgenii Ofitserov, Vasily Tsvetkov, and Vadim Nazarov. Soft
edit distance for di↵erentiable comparison of symbolic sequences.
https://arxiv.org/pdf/1904.12562.pdf, 2019.

[9] Janos Pach. Geometric Graph Theory, 2017. https://api.
semanticscholar.org/CorpusID:46340637.

[10] Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and
Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss,
R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D.
and Brucher, M. and Perrot, M. and Duchesnay, E. Scikit-learn: Machine

Learning in Python. Scikit-learn developers, 2023.

[11] Sarah Percival, Joyce Onyenedum, Daniel Chitwood, and Aman Husbands.
Topological data analysis reveals core heteroblastic and ontogenetic pro-
grams embedded in leaves of grapevine (Vitaceae) and maracuyá (Passiflo-
raceae). PLoS computational biology, 20:e1011845, 02 2024.

36

[12] Kaspar Riesen and Horst Bunke. IAM Graph Database Repository for
Graph Based Pattern Recognition and Machine Learning. In Niels da Vi-
toria Lobo, Takis Kasparis, Fabio Roli, James T. Kwok, Michael Geor-
giopoulos, Georgios C. Anagnostopoulos, and Marco Loog, editors, Struc-
tural, Syntactic, and Statistical Pattern Recognition, pages 287–297, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[13] Will Rodman. will rodman thesis: Traversal Distance Python Library.
https://github.com/compgeomTU/will_rodman_thesis, 2024.

[14] Carola Wenk. Weak Fréchet code. https://www.cs.tulane.edu/

~carola/research/code.html, 2018.

37

